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ABSTRACT

We study various stability type conditions on a matrix A related to
existence of a positive diagonal matrix D such that the Lyapunov matrix
Q=AD + pa is positive definite. Such problems arise in mathematical
economics, in the study of time-invariant continuous-time systems and in the
study of predator-prey systems. Using a theorem of the alternative, a
characterization is given for all A such that a corresponding D exists. In
addition, some necessary conditions for consistency and some related ideas
are discussed. Finally, a method for constructing D is given for matrices

A satistying certain conditions.
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All the vectors in this paper are real and the matrices are squar"éf : ~\ % \I
and real. b smomers
“ JUSTFIC IR ameonecmmneees
The well known theorem of Lyapunov [ 1892] states that all the |. . . e

eigenvalues of a matrix A have negative (positive) real parts if and | omraisynon/AYAILAGITT ©
R AL @/ -

only if there exists a symmetric positive definite matrix H such that

Q = AH + HA® \

is negative (positive) definite. Such a matrix A is said to be negative
(positive) stable and such matrices have been studied extensively in the
economics and mathematics literatures (e.g. Johnson { 1974] and Taussky

[1961]). By a stable matrix we shall mean a positive stable matrix.

We are concerned here with conditions under which the matrix H in
the expression for Q can be chosen to be a positive diagonal matrix D.

When this is the case, A is called diagonally stable.
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Matrices A for which such a matrix D exists are important in the study
of dynamical systems (e.g. Araki [1975]), in the study of predator-prey
systems (e.g. Krikorian [1976]) and in the study of dynamic equilibra

in economics (e.g. Johnson [1974]).

We first collect some observations.

Lemma 1. The following statements are equivalent for a matrix A.

(1) There exists a positive diagonal matrix D such that
t
Q = AD + DA
is positive definite.

(la) There exists a positive diagonal matrix D such that

x'ADx> 0

for all nonzero vectors X.

(lb) There exists a positive diagonal matrix D such that the

symmetric part of

o
>
T

is positive definite.
(lc) At satisfies Condition (1).
(ld) A"l exists and satisfies Condition (1).

(le) For each positive diagonal matrix E, AE and EA satisfy

Condition (1).

(1f) Every principal submatrix of A satisfies Condition i1},



Proof. Clearly Conditions (1) and (la) are equivalent. To

complete the proof it is enough to show that (1) implies (lb), (lc), (ld),

f)'
t
Let D be a positive diagonal matrix such that AD + DA" = P

(le) and (1

is positive definite. Then
ke ok il Rk i £ ad ey A
D 2AD2 + (D 2AD?) = D 3AD +DA")D 2 = D 2PD 2
which is positive definite, so that (lb) holds. Clearly (lc) follows since
Pt is positive definite. Also A is nonsingular, being stable, and

1.t

) )

Ao+ ) = A teia
which is positive definite so that (1d) holds. If E is a positive diagonal
matrix then
=3 -1 t

(AE)(E""D) + (E" "D)(AE)" = P,

(EA)(DE) + (DE)(EA)' = EPE
so that (le) holds. The statement (1) => (lf) follows from the fact that
priteripal submatrices of a positive definite matrix are also positive definite. ®

We now characterize these matrices utilizing the theory of the

alternative for systems of linear inequalities.

Theorem ]. A matrix A is diagonally stable if and only if for every

nonzero positive semidefinite matrix B, BA has a positive diagonal element.

Proof. Let Vl be the space of real diagonal matrices ordered by

the cone Kl of nonnegative diagonal matrices. Let VZ




be the space of symmetric matrices ordered by the cone KZ of positive semi-

definite matrices. In both cases we use the inner product

(A, B) = tr(AB) .

%k
If the dual cone K of KCV, is defined by

*
K

{Be V;(B,A) >0 forall Ae K}

"

thei E o B 5ok
en 1- 1 an 2

operator TA:V1 - V2 by

K, (cf. Hall [1967]). Define the linear
t
TA(D) = AD + DA .

The theorem of the alternative (Berman and Ben-Israel [1971], Berman [1973],
p. 20) says that the system

TA(D) € int KZ’ D ¢ int Kl

is consistent if and only if there is no nonzero solution for the system

e Bk
“Ty(B)e K, BeK,

The mapping T; is defined by

t
(T5(B), D) = (B, T5(D))

t
forall De Vl. Thus TA(B) is a diagonal matrix which satisfies

tr(D;(B)D) = 1(BT,(D)) = tr(B(AD + DAY)) = tr{{8A + A'B)D)

for every diagonal matrix D. Thus

t t :
TA(B) = diag (BA+ A B)u = 2 diag (BA)ii ‘

The conclusion follows. ]




Similar results can be obtained for the operators defined by Stein
[1952], Schneider [1965] and Hill [1969]. For the Stein operator CA

we have

I I : t
CA(D) = D-A DA and CA(B) = dlag{aii - (ABA )ﬂ} ;

We now list some immediate corollaries to Theorem 1. The first
corollary and the ''only if" part of the second corollary can also be

found in Johnson [1974].

Corollary 1. If A is a triangular matrix with positive diagonal

elements, then A satisfies (1).

Proof. By Lemmal, A can be assumed to be upper triangular. Let
k be the smallest index such that for a given positive semidefinite

matrix B, b 0. Then (BA)kk>0' (]

kk >

Corollary 2. A matrix A of order 2 is diagonally stable if and only

if all its principal minors are positive.

Proof. The ''only if'' part holds for matrices of any order as we
shall show in the next theorem. It is enough to prove the 'if'' statement

for matrices A of the form

-§a




We must show that for every nonzero positive semidefinite B, either

(BA)“ >0 or (BA)22>0. If b“= 0, then (BA)11>0. If bll > 0

and b22 > 0 we may assume that
1 b
B =
b c
ith 0<b2< We also have 1 > whence c¢ > a_.a b2
wi < C. e also ha alZaZI, 12322
If now
= + <0
(BA)11 1 a21b <0 and
(BA)22 = c+ alzb <0, then
2
< (- - = Sl
c<( azlb)( alzb) a21a12b : a contradiction .

Some fairly obvious necessary conditions for a matrix to satisfy
5

b

Condition (1) are now given.

Theorem 2. If a matrix A satisfies Condition (1) of Lemma 1 then
it also satisfies each of the following conditions.

(2) All the principal submatrices of A are stable.

(Za) The real part of each eigenvalue of each principal submatrix
of A is positive.

(3) All the principal minors of A are positive.

(3a) Every real eigenvalue of each principal submatrix of A is
positive.

(3b) A + E is nonsingular for each nonnegative diagonal matrix E.




(3C) For each X # 0 there is a positive diagonal matrix E such that

xtAEx >0,
(3d) A does not reverse the sign of any vector. That is, if x# 0

then for some subscript i

xi(.l-\x)i >0

(Be) For each signature matrix S = diag(+ 1), there exists an
x > 0 such that

SASx > 0 .

Proof. It is well known that Conditions (2) and (Za) are equivalent

by the theorem of Lyapunov [1892] for arbitrary matrices A. Moreover

Conditions (3) through (39) are also equivalent (cf. Plemmons [1976])

and (Za) implies (3). Also, it is clear that (1) implies (2) by Condition (le). 2
For the next result we need the following notation. Let

{(n) = {1,...,n}. Forany nXxn matrix C and any a C (n), let

Cl4] =1, and for a # ¢ let C[a] be the principal submatrix of C

with indices from o andlet C(a) be the principal submatrix of C

with indices from (n) - a. If D = C~1 then from Sylvester's identity,

(cf. Gantmacher and Krein {1960], p. 15) we have

=1

(*) det D[ a] = (det C) = det C(a) .

Theorem 3. If a matrix A satisfies any of Conditions (1), (2) or (3)
in Theorem 2, then A is nonsingular and each of the matrices At and

A’ satisfies the same condition.




Proof. The only nonimmediate assertion is that if A satisfies (2)
-1
then so does A ~. Suppose A satisfies (2). Let 2z be any complex
number such that Re z > 0 and put

=1

A =A+zl, B =A
Z 2 VA

~—

Clearly every principal submatrix of A is stable. Then for any « C (n)
we have from (*) that

& -1
det Bz[a] = (det Az) det Az(a) .

But the stability of Az(a) yields that the right hand side is nonzero.

Since 2z is any number in the closed right half plane it follows that

B[a] has no eigenvalues in the closed left half piane, i.e. B satisfies (2). ®
For a given A we have the following result on the inductive construc-

tion of a D satisfying (l).

Theorem 4. Let A be partitioned (n -1,1) so that

o
2 aT a
3

Suppose there is a positive diagonal matrix D, of order n -1 such that

AlDl + DIAI = A is positive definite. If z = (z,) is a vector of order

1l i

n - 1, define the inner product (zllzz) by

-1
z

.
<21|zz> ot % B 1N

Let x = ay y=D Then a positive scalar d exists such that for

1%y’




t
= , AD + DA is positive definite, if and only if
= 0 d
a> (xly) + (xIxy(yly)) .

Proof. Regarding d as an unknown we note that
t
D +D a.d + D, a
t Al ¥ lAl 2 1

AD + DA = 3 is positive definite if and only
t t

a3D1 ke da2 2ad

if its determinant A is positive. But A = (det Au)[(Zda = agD

-1
Au (azd + Dla3)] > 0 when and only when

t
l+ daz)

t -1 t -1 t,-1 t, -1 2
0 £ = = =
< 2da a3DlAll Dla3 a3DlAll azd daZA11 Dla3 daZAHazd
2
= 2da - (yly) - 2¢ylx)d - (x|x)a” .
2
Put pld) = (xlx}d + (Z(xly) - 2a)d + (yly). There is a d for which

p(d) < 0 if and only if for the discrimant of p we have
2
0 < 4{((xlyy - @) - xIx)(yly)} .

Put q(z) = 2% - 2xlyyz + ((XIY)Z - (x|xy(yly)). We have

q'(z) = 2z - 2(x|y), e at z = (xly), q(z) has the negative minimum
al{xly)) = -(x|xy¢yly). The larger root of q(z) = 0 is z = (x|y) +
(x|xy(yly). Sofor a> o (xlyY + x|x) (yly) the discriminant of p
is positive. In order thata d > 0 exists we must have that the larger
root of p(d) = 0 is positive. However the larger root of p(d) = 0 is
given by

r(a) = a - (xly) + ((xly) - a)% - (x|x) (yly).




We see that rf ao) >0 and r(a) is increasing for a > a- Hence for
any a > ao the discriminant of p is positive and the larger root is

positive. Thus we can find the required d. [

Remarks.

l. If A satisfies any of Conditions (1), (2) or (3) then so does
each principal submatrix of A.

2. If A satisfies Condition (I) of Lemma 1, then there need not

always exist a positive diagonal matrix D such that

AD + DA = 1.
In fact, the proof of Theorem 3 in Taussky [1961] shows that such a D
exists if and only if
A =E + SE
where E is a positive diagonal matrix and S is skew symmetric.
3. It is easy to construct matrices which satisfy (3) but not (2)

of Theorem 2 and thus not (1). For example, the matrix

3 A2
A={2 3 4
- ST i

satisfies (3), but its eigenvalues are 9 and %~N3i so that it is not

stable and thus does not satisfy (2). Note also that A is normal.
4. To show that (2) does not imply (1) we proceed as follows: Let

A be the matrix given in Remark 3. Let

~]10-



D={0 1 i
0

with € > 0. Then for sufficiently small €, all the principal submatrices of
AD are stable. Thus AD satisfies Condition (2), but by Remark 3 and
Lemma 1, AD does not satisfy Condition (1).

5. The matrices A = (aij) arising in the work of Krikorian [1976],
mentioned earlier, satisfy aijaji > 0 forall i #j. The example in
Remark 4 shows that even for these matrices Condition (2) does not imply
Condition (1).

6. For certain classes of matrices, Conditions (1), (2) and (3)
are all equivalent. These classes include:

(a) The triangular matrices.
(b) The positive definite matrices.
(¢) The 2 X2 matrices.

(d) The matrices A = (a“) with a,, <0 for i #j.

ij
The matrices satisfying (d) and (1), (2) or (3) are of course the non-
singular M-matrices.
7. A significantly large class of matrices which satisfy (1) can
be obtained as follows: For A = (aij)’ let M(A) be the matrix given by
la, | 1 1=

ij

-laijl if i+#]j

ij

-]]l=




Then it is known (e.g. Plemmons [1976]) that if A has a positive
diagonal then each of the following conditions is equivalent:

(a) 7(A) is a nonsingular M-matrix.

(b) There exists x > 0 such that for each signature matrix
S = diag(x 1),

SASx > 0 .

(c) There exists a positive diagonal matrix D such that AD is
strictly row diagonally dominant.

(d) There exists a positive diagonal matrix D such that

plap

is strictly row diagonally dominant.

It follows from the work of Johnson [1974] that any matrix A

with a positive diagonal, satisfying any of these conditions, also

satisfies (l). That the converse is not true is easily established.
Let
1 -1
A= .
1 1

Then by Corollary 2, A satisfies (1). But 7(A) is a singular matrix.

Open Question

A matrix A was defined by Arrow and McManus [1958] to be

D-stable if A satisfies:

o] =




(4) For each D = diag(d,..., dn), AD is stable if and only if

1’
di>0, G ) RPIRER ¢ 1
The more common practice now is to define A to be D-stable if it
satisfies

(5) AD is stable for each positive diagonal matrix D.

The class of matrices satisfying (5) properly contains the class of
matrices satisfying (4) which, in turn, properly contains the class

satisfying (1). That these classes are not the same is illustrated by the

matrix

which satisfies (4), but not (1). Examples also exist that satisfy (5)
but not (4) (e.g. Johnson [1974]).
In view of these conditions we pose the following open question:
Are the topological interiors of the sets of matrices satisfying

(1), (4) and (5) identical ?
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